html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Ученые смогли наблюдать за лабораторными животными без установки меток

Разработана система автоматического отслеживания перемещений и движений лабораторных животных, для которой не требуется установка меток.

Американские и немецкие ученые совместно разработали систему автоматического слежения за лабораторными животными — DeepLabCut. Теперь исследователи следят за перемещениями и действиями подопытных, не ставя на них метки.

 

Традиционно видеонаблюдение дает много материала для научной работы с животными, но и занимает достаточно времени. Просмотр записей — длительная процедура, которую не всегда можно ускорить. Отличать животных друг от друга трудно, и на них приходится ставить метки. Если пометить крысу цветными пятнами легко, то с мелкими насекомыми возникает проблема. Кроме того, животные стирают метки.

 

Проблема распознавания отдельных особей с маркерами давно решена, также используют тепловые сигнатуры — они хорошо подходят для крупных животных на свободе. Если же эксперимент требует следить за отдельными конечностями или другими частями животного, то задача многократно усложняется. Сам ученый легко распознает детали на видео, но вынужден просматривать записи в реальном времени. Для автоматического распознавания движений пальцев метки придется ставить очень тесно. Крепления при этом сложно сделать надежно, так как животные будут их грызть.

 

Коллектив ученых во главе с Маттиасом Бетге (Matthias Bethge) отказался от меток, решив использовать нейросети. Метод прост: снимки размечают вручную с указанием точек, которые затем отслеживает программа. Нейросеть обучают, и она определяет для каждого пикселя изображения вероятность появления соответствующей части тела с учетом положения животного в пространстве. Число снимков, которые нужно разметить вручную, невелико: уже со ста система работает уверенно, исследователи рекомендуют для надежности разметить 200 кадров.

 

Ученые использовали сверточную нейронную сеть (convolutional neural network, CNN), строение которой аналогично работе зрительной коры человека. Поэтому такая архитектура сети хорошо подходит для распознавания образов. Специалисты дополнительно применили метод глубокого обучения (deep learning) с использованием технологии DNN (Deconvolutional Neural Networks). Параметры и фильтры, сформированные в процессе обучения CNN, используют для первичной обработки сигналов, что улучшает распознавание объектов.

 

Специалисты провели два эксперимента на мышах и один на дрозофилах.

 

Бег грызуна по бумажной катушке с «нарисованной» запахом дорожкой изучали при первом опыте. Видеозапись специально осложняли помехами: неоднородное освещение, динамические тени от животного, искажения от широкоугольного объектива. Во время бега мышь часто пересекала след и поворачивала.

 

Для опыта использовали семь мышей. Съемку вели две камеры, 640×480 и 1700×1200 пикселей, с частотой 30 Гц.  Кадры с высоким разрешением чрезмерно велики для обработки, поэтому их обрезали до размера 800×800 пикселей вокруг изображения мыши. Ученые взяли 1080 случайных кадров из разных съемок и проставили метки на морду, кончики ушей и основание хвоста.

 

На видео зеленые и голубые точки показывают 30 будущих и прошлых позиций морды с периодичностью в 33,3 миллисекунды. Пурпурные ромбы обозначают расположение тела и морды с ушами в прошлом. Вместе эти четыре точки определяют направление тела и головы мыши. Дорожка с запахом нарисована серым цветом.

 

Мониторинг движения мыши по запаховому следу / © A. Mathis, Murthy Lab (Harvard University)

 

При втором исследовании отслеживали движения передней лапки мыши. Предварительно зверьков научили за вознаграждение тянуть специальный рычаг. Метки при таком наблюдении использовать практически невозможно.

 

В эксперименте использовали пять мышей. Съемка велась на камеру с разрешением 2048×1088 пикселей и частотой 100-320 кадров в секунду. Исследователи разметили 159 кадров, на каждом пальце было по четыре метки: на кончике, межфаланговом и пястно-фаланговом суставах, основании запястья. Изображение обрезали до области, содержащей нужное движение. Видео наглядно демонстрирует возможности метода.

 

Мониторинг движения передней лапы мыши при тяге за рычаг / © A. Mathis, Murthy Lab (Harvard University)

 

Третий опыт — мониторинг поведения дрозофил во время яйцекладки. В этом случае нанесение меток крайне затруднительно из-за размера мушек. На кадрах разметили 12 точек: четыре на голове, семь на тельце и одну на яйцекладке. Метод отлично работал и в этом случае.

 

Вычисления каждого эксперимента требовали около полумиллиона шагов обучения нейросети, что заняло от 24 до 36 часов работы видеокарты NVIDIA GTX 1080 Ti.

 

Ученые выложили программу вычислений в свободный доступ.

Читать дальше
Twitter
Одноклассники
Мой Мир

материал с naked-science.ru

2

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • NakedScience
          • ученые
          • исследования
          • эксперименты
          • домен naked-science.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции