html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Ценный кадр: как предсказать увольнение сотрудников с помощью Big Data


Фото Getty Images

Подразделение «HR-сервисы» компании IBS занимается модернизацией HR-процессов и высокотехнологичным HR-аутсорсингом для крупных компаний. В задачи входит выполнение около 15 000 наймов ежемесячно и оценка порядка 10 млн заявок в год на различные кадровые позиции. Чтобы обработать такой объем информации, задачи были автоматизированы, а для их анализа применены методы работы с большими данными. Результаты аналитики помогают принимать стратегические и тактические решения в HR. Компании, которые автоматизируют HR-решения обычно интересуют несколько задач:

Управление профилем успешности: если стоимость конечной продукции высока, а производительность труда может сильно колебаться, то, принимая на работу «правильных пчел, которые будут делать правильный мед», компания может заработать на повышении производительности.

Борьба с текучестью кадров. Как предсказать увольнение сотрудников? Тут есть два подхода. Наиболее распространенный — собирать данные о поведении людей в IT-системах компании и делать по ним выводы о конфликтах в коллективе.

Цифровой след сотрудника. Пожалуй, самая интересная задача. Сотрудники кадрового департамента достаточно дисциплинированно собирают данные о людях: они нужны, чтоб считать заработные платы, вести кадровый учет и тп. Но благодаря IT-системам корпоративных порталов, CRM-системам и системам управления движением кандидатов появился большой массив данных нового типа, который можно использовать для более широкого круга задач. Мы смогли на его основе прогнозировать увольнения.

Предсказание увольнений

Порядка 30-40% работы нашего подразделения тратится на работе с HR-аналитикой штата наших клиентов. Понятно, что замещать очень производительных людей очень дорого. Ценные сотрудники не только дают очень хороший результат, но еще и их уход влечет большие неудобства и затраты. Есть ряд западных исследований, которые однозначно показывают, что стоимость замещения высококлассного специалиста в 10 раз выше, чем прямая стоимость привлечения нового сотрудника.

Было бы здорово, если бы мы могли мониторить и предвосхищать увольнение тех, кого компания не хочет потерять. Чем выше стоимость труда в компании, тем более актуален этот вопрос. Мы знаем, что в отдельных отраслях затраты на зарплаты могут составлять 15-20% от стоимости продукта, а в некоторых — до 90%. Получается, что в компаниях, где стоимость труда высокая, уход сотрудника влечет и прямые затраты (быстро найти замену и обучить нового сотрудника), и косвенные (например, время руководителя на обучение нового сотрудника).

Два главных вопроса, на которые хотят получить ответ руководители такой компании: кто из сотрудников с высокой вероятностью покинет компанию в ближайшее время и каковы факторы риска, которые объясняют уход людей. Чем ближе к дате увольнения, тем очевиднее те или иные признаки. Например, есть прямая корреляция между тем, что люди перестают посещать обязательные тренинги, и намерением уволиться. Когда вы узнаете о таких закономерностях, они кажутся очевидными, но пока вы цифры не подскажут их, то вы не догадаетесь о них. Например, существует корреляция между количеством рабочих смен, которые выпадают на выходные дни и вероятностью увольнений. Если голубой воротничок, — скажем, линейный персонал в рознице, — выходит два уикенда подряд, текучесть невысокая. Как только его смена выпадает на третий выходной подряд, вероятность увольнения сразу увеличивается по экспоненте. Зная это, можно системно принять меры, ограничив возможность назначить третью рабочую смену на уикенд подряд.

Еще один фактор — удаленность сотрудника. Сегодня мы движемся в сторону экономики временного наемного труда: все глобальные тренды говорят о том, что скоро очень большой процент труда мы будем покупать у людей, которые не работают в штате компании. В связи с этим все сильнее ощущается проблема вовлеченности этих людей во внутренние процессы.

Мы не используем аналитику социальных сетей, для того чтобы предсказать увольнение. За полгода кропотливой аналитики данных мы построили модель, которая может вычислить 8 из 10 сотрудников, готовых уволиться в перспективе трех месяцев. То есть мы смогли спрогнозировать четкий регулярный процесс увольнений.

Второй фактор связан со стажем и выгоранием руководителя. Мы заметили, что при продолжительности работы руководителя в одной должности более семи лет, резко увеличивается риск увольнений, что позволяет правильнее управлять преемственностью и формированием скамейки запасных руководителей.

Как компании бороться с увольнениями? Проводить диагностику экосистемы данных в организации. Обычно информация, накопленная кадровыми отделами компаний не готова к использованию.

Проблемы с данными

На самом деле, большинство необходимых данных в компании уже есть, другой вопрос — их качество. Кадровая информация должна содержать данные о должности, об уровне позиции в иерархии организации, о характеристиках, параметрах работы, уровне ответственности, о содержании и объеме обязанностей сотрудника. Также должны быть включены биометрические данные, информация о руководителе, карьерная история, совокупный доход, оклад, место в грейде (должностной иерархии) компании, история премирования людей, история продвижения, карьерный рост и оценка потенциала. И еще огромный массив других данных.

Мы закономерно встречаем одни и те же проблемы в различных организациях.

Первая трудность — не все данные хранятся в HR-системах. Они не собираются автоматически и фигурируют в каких-то отдельных экселевских файлах разного формата. Существуют системы для соблюдения норм кадрового делопроизводства и расчета зарплат, системы управления обучением, тренингами и оценкой компетенции, базы учета кандидатов (ATS, Applicant Tracking System), а также отдельно — данные о будущих сотрудниках. Основной массив необходимых данных (примерно ⅔), к сожалению, не автоматизирован и собирается в Excel, что делает работу с ними очень сложной.

Вторая проблема — это единообразие данных. Поскольку нет четкой методологии, данные собираются по-разному. Тут играет роль и человеческий фактор (кому как удобнее).

И наконец, типичная трудность — это разрозненность HR-систем. Например, данные о кандидатах на этапе найма собираются в одной системе, а о кандидатах, которые перешли в статус сотрудника, — в другой. И между ними нет сквозного идентификатора, который позволил бы проанализировать данные об этом и том же человеке, когда он переходит это границу.

Проактивные меры

Что делать с теми сотрудниками, которые, согласно результатам анализа, потенциально планируют уволиться? Это вопрос на миллион долларов. Действительно, многие компании экспериментируют с предиктивной аналитикой событий в кадровых вопросах, но переход от результатов исследований к конкретным действиям вызывает больше всего проблем.

Для каждой компании факторы удержания сотрудников и причины их увольнения могут быть совершенно разными — нельзя просто взять перечень факторов и применять их в каждом новом случае. Нельзя сопоставить даже компании одной отрасли — культура компаний очень плохо оцифровывается. Корреляции фактически не будет. И, самое главное, — все мы очень зависим от наших руководителей. Поэтому очень много определяет прямая связь между начальником и подчиненными, что делает практически невозможным перенос практики из одной компании в другую.

Свой среди чужих: заблуждения предпринимателей, запускающих бизнес на Западе Сердечная привязанность: как заставить потребителя полюбить ваш бренд Первобытный страх. Почему предприниматели не пользуются онлайн-кассами Грусть финансистов. Что банки знают о своих клиентах и как это используют Большие деньги от больших данных: о чем говорили на конференции Forbes Игры XXI века. Как с нуля создать крепкого специалиста Данные промышленного масштаба: как российским заводам угнаться за цифровой экономикой Большие данные на продажу: как заставить всех делать то, что вам надо Напечатать мост: какие технологии начнут революцию в строительстве
Читать дальше
Twitter
Одноклассники
Мой Мир

материал с forbes.ru

1

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • Forbes.ru
          • бизнес
          • домен forbes.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции