html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Теорема невозможности: существует ли демократия с точки зрения математики

Теорема невозможности: существует ли демократия с точки зрения математики

© iStock

Кажется, что выборы, на которых всем дают право голоса, а победителем становится тот, за кого проголосует больше участников, — максимально прозрачная и справедливая процедура. Но ученые давно доказали, что это далеко не всегда так. «Теории и практики» публикуют главу из книги Эдварда Шейнермана «Путеводитель для влюбленных в математику» — о том, как работают правило большинства и правило диктатора, а также почему так сложно учесть интересы всех.

Выбор в случае двух кандидатов

Знакомая всем демократическая процедура — выборы, на которых два кандидата претендуют на одну и ту же должность. Избиратели отдают голоса за первого или второго кандидата, и побеждает тот, кто наберет больше голосов.

Ключевая фраза: побеждает тот, кто наберет больше голосов — краеугольный камень демократического общества. Но насколько справедлив этот принцип?

* Более сложная система выборов подразумевает, что избиратели отмечают, насколько сильно они предпочитают одного кандидата другому.

Вообразим, что два кандидата, претендующих на одну и ту же должность, зовутся A и B. Избиратели отдают голос за того или другого*.

Если отдано n голосов, данные голосования выглядят следующим образом:

** Мы будем использовать термин «профиль предпочтений» для совокупности индивидуальных голосов.

Как используется такой профиль предпочтений* для принятия решения? Обычно просто подсчитывают, сколько голосов было отдано за каждого кандидата. Победителем оказывается тот, кто набрал больше голосов. Мы назовем такой подход правилом большинства — это метод демократических сообществ. Но это не единственный метод учета профиля предпочтений для принятия решения. Посмотрим на альтернативы.

Правило диктатора подразумевает, что решение принимается на основе голоса одного-единственного человека, скажем избирателя No 1. Если No 1 выбирает A, побеждает A; если No 1 выбирает B, побеждает B. Другие мнения не учитываются.

Мы будем называть правило большинства и правило диктатора методами принятия решений. На входе — голоса избирателей, на выходе — решение о победе того или другого кандидата. В мире используют оба метода, но правило диктатора считается нечестным. Почему?

* Важно не смешивать метод принятия решения (например, правило большинства) со свойствами, которыми он обладает (например, нейтральность учета голосов). Разные методы могут обладать каким-то одним свойством, но отличаться другими. Мы высвечиваем разницу, используя полужирное начертание для обозначения метода и курсив для обозначения свойства.

Для вящей справедливости метод принятия решения должен обладать определенными свойствами. Обидная особенность правила диктатора заключается в том, что голоса не учитываются равным образом. Более формально: справедливый метод принятия решения должен следовать нейтральности учета голосов* — не важно, кто голосует, важно, сколько голосов отдано за того или другого кандидата. Правило большинства отвечает требованию нейтральности учета голосов, а правило диктатора — нет.

Если мы руководствуется только теми методами, которые обладают свойством нейтральности учета голосов, мы просто суммируем голоса, отданные за того или другого кандидата. Итоговая статистика может выглядеть следующим образом:

Есть и другой метод. Назовем его правилом алфавита. Побеждает тот кандидат, чье имя идет первым по алфавиту. Тогда в любом случае побеждает кандидат A. Очевидно, и этот метод несправедлив, но почему?

* Отмечу, что правило диктатора удовлетворяет требованию нейтральности учета кандидатов.

Он обладает свойством нейтральности учета голосов: все избиратели равны в том плане, что не учитывается ничье мнение! Проблема состоит в том, что кандидаты поставлены в неравное положение. Мы будем говорить, что метод обладает свойством нейтральности учета кандидатов*, если к кандидатам относятся одинаково; если кандидат сменит имя, это не повлияет на итог выборов.

«Путеводитель для влюбленных в математику»...
«Путеводитель для влюбленных в математику». Издательство «Альпина Нон-фикшн»

Чувство справедливости требует нейтральности учета голосов и нейтральности учета кандидатов. Достаточно ли этого?

Есть еще один метод, который мы будем называть правилом нечетности: победу одерживает тот кандидат, который набрал нечетное число голосов. Если A предпочли 20 избирателей, а B — 13 избирателей, побеждает B. Этот метод отвечает требованиям нейтральности учета голосов и нейтральности учета кандидатов.

Или рассмотрим правило меньшинства: побеждает тот, кто набрал меньше всего голосов. Если A предпочли 12 избирателей, а B — 30 избирателей, побеждает A. Этот метод также отвечает требованиям нейтральности учета голосов и нейтральности учета кандидатов.

Два требования, нейтральность учета голосов и нейтральность учета кандидатов, исключают некоторые нечестные методы (такие как правило диктатора и правило алфавита), но кое-какие несуразные методы отвечают тому и другому требованию. Введем новое свойство, позволяющее отсеять разумные методы (такие как правило большинства) от несуразных.

Вот в чем заключается проблема с правилом нечетности. Вообразим, что профиль предпочтений следующий:

Если руководствоваться правилом нечетности, побеждает A. Теперь предположим, что один избиратель передумал, забрал свой голос за B (проигравшего) и отдал A (победителю). Передумал всего лишь один избиратель; другие остаются при своем мнении. Итог таков:

Правило нечетности приводит B к победе.

* Вот формальное определение монотонности. Мы называем метод принятия решений монотонным, если перемена решения одного избирателя в пользу победителя не меняет итога выборов.

Нечестно! Если один избиратель меняет свое мнение и предпочитает победителя проигравшему, это не должно влиять на результат. Правило нечетности нарушает требование монотонности*. Есть еще одна проблема с правилом нечетности. Что произойдет, если избирателей четное количество? Рассмотрим две ситуации:

В первом случае победителей нет, во втором случае побеждают оба кандидата. В том или ином случае мы заходим в тупик.

Желательно избегать тупиковых итогов на выборах, чтобы коллективное мнение избирателей приводило к определенному решению. Некоторые методы (такие как правило диктатора) никогда не создают таких проблем. Но некоторые методы, отвечающие требованиям нейтральности учета голосов и нейтральности учета кандидатов, тоже могут завести в тупик: например, если голоса избирателей распределились поровну.

Даже если мы накладываем условия нейтральности учета голосов и нейтральности учета кандидатов, половина голосов может уйти первому кандидату, а другая половина — второму, так что нельзя будет принять внятное решение. Такое вероятно даже в случае правила большинства.

* Правило диктатора, конечно, однозначное: оно никогда не заводит в тупик.

Однако оно не позволяет выбрать победителя в одной-единственной ситуации. Мы будем говорить, что этот метод в целом однозначный, так как позволяет принять решение во всех случаях, кроме одного: когда голоса распределились поровну*.

Правило меньшинства тоже в целом однозначное (но не монотонное). Мы определили четыре свойства справедливых выборов: нейтральность учета голосов, нейтральность учета кандидатов, монотонность и однозначность. К счастью, правило большинства обладает всеми этими свойствами. Занесем результаты в таблицу:

* Кеннет Мэй (1915–1977) — американский математик, экономист и историк математики. Защитил диссертацию по математической теории трудоустройства. Придерживался коммунистических взглядов. В терминологии Мэя четыре свойства — нейтральность, анонимность, положительный отклик и однозначность. — Прим. пер.

Но ведь должны быть альтернативы! Есть ли другие методы принятия решений, отвечающие всем четырем требованиям? Ответ отрицательный. В 1952 году Кеннет Мэй доказал, что правило большинства — единственный метод, обладающий всеми четырьмя свойствами*.

Выбор в случае более чем двух кандидатов

Наше интуитивное предчувствие, что правило большинства справедливее всего, подтвердилось со всей математической строгостью. Теорема Мэя говорит о том, что для выборов в случае двух кандидатов есть всего лишь один разумный метод. Ситуация существенно меняется, если число кандидатов возрастает. Но мы все еще вправе надеяться, что методы вроде правила большинства остаются эффективны.

Начнем с описания того, как именно избиратели отдают голоса. Если кандидатуры выдвинули три (или больше) человека, каждый избиратель должен ранжировать их в своем бюллетене. Статистика может выглядеть так:

* Я максимально упрощаю ситуацию. Можно себе представить, что избиратель симпатизирует A, равнодушен к B и C и полностью отвергает кандидатуру D. Так или иначе, мы рассчитываем, что избиратель все-таки ранжирует их. Математики рассматривают более сложные ситуации, но мы с вами ограничимся самой простой моделью.

Как и раньше, мы ищем методы принятия решений, учитывающие распределение голосов на входе, а на выходе выносящие решение о победителе. Например, правило диктатора подразумевает, что победа достанется тому, кто возглавляет список предпочтений одного-единственного избирателя No 1. В нашем случае это кандидат A. Прочие голоса игнорируются. Правило диктатора не отвечает требованию нейтральности учета голосов (хотя требование нейтральности учета кандидатов здесь выполняется). Вероятно, разумнее руководствоваться методами, нейтрально учитывающими голоса, и посчитать, каков приоритет того или иного кандидата для каждого избирателя. Например, в случае трех кандидатов* итоговая статистика выглядит так:

Согласно этой статистике, 20 человек поставили на первое место A, 14 предпочли B, 9 предпочли C. Как нам выбрать победителя?

Правило большинства хорошо подходит, когда кандидатов двое. В случае трех кандидатов перевес возникает тогда, когда больше половины избирателей поставили на первое место одного кандидата. Это происходит не всегда, потому руководствоваться правилом большинства становится проблематично. Кроме того, правило большинства не учитывает распределение приоритетов второй и третьей степени. Посмотрим, насколько это важно. Проанализируем следующий профиль предпочтений:

Отмечу, что больше половины избирателей поставили на первое место A. Следует ли из этого, что отдать победу A — лучший выбор? А что значит «лучший»? Математика ответить не в силах. Для нас справедливо то, что соответствует нашей системе ценностей. Проиллюстрируем это обстоятельство. Вообразим, что «кандидаты» у нас — рестораны, а «избиратели» — офисные клерки, ищущие место для проведения корпоратива. Вот информация о ресторанах:

Ситуация вполне реальная. Большинство клерков (24 человека) предпочитает поужинать в стейк-хаусе, но значительное число (20 человек) не любит стейки. Индийская и греческая кухня остались в меньшинстве, но собрали равное число голосов. Однако абсолютно все отметили ресторан со шведским столом в качестве второго приоритета. Это выглядит хорошим компромиссом, и мудрый босс выбирает заведение со шведским столом для корпоратива. Можно ли построить аналогичный метод принятия решения на выборах?

Существует множество методов для проведения выборов, когда кандидатов более двух. Правило большинства идеально подходит в случае выборов среди двух кандидатов, но в других ситуациях кандидат может не получить больше 50% голосов и, как показывает наш пример с ресторанами, тогда становится неясно, как принять «верное» решение. Давайте обсудим несколько методов принятия решений и выясним, какой из них лучше. Будем использовать следующий профиль предпочтений:

Профиль предпочтений в случае трех кандидатов

• Правило большинства. Это наиболее распространенный метод. Мы выясняем, за какого кандидата отдано наибольшее число голосов, причем не обязательно больше половины. В вышеуказанном профиле предпочтений кандидата А выбрало наибольшее число избирателей (шесть), затем идет В (пять), на последнем месте С (два). По правилу большинства побеждает А.

• Правило первых двух приоритетов. Проблема правила большинства состоит в том, что оно не учитывает рейтинг предпочтений. Правило первых двух приоритетов основано на подсчете того, как много избирателей поставили кандидата на первое или второе место. Для вышеуказанного профиля предпочтений:

― A получил 6 + 1 = 7 голосов (шесть раз на первом месте и один раз на втором);

― В получил 5 + 4 = 9 голосов (пять раз на первом месте, четыре раза на втором);

― С получил 2 + 8 = 10 голосов (дважды на первом месте и восемь раз на втором).

Таким образом, по правилу первых двух приоритетов побеждает С.

* Этот метод назван в честь Жана-Шарля де Борда, французского математика XVIII века. Подсчет по методу Борда в случае четырех кандидатов делается так: первый приоритет избирателя приносит кандидату 3 очка, второй — 2, третий — 1, четвертый — 0 очков. Количество очков в случае пяти кандидатов будет 4, 3, 2, 1 и 0 соответственно. Обратите внимание, что в случае двух кандидатов метод Борда ничем не отличается от правила большинства.

• Метод Борда. Если мы руководствуемся правилом большинства, то не учитываем, кого каждый избиратель ставил на второе место. В правиле первых двух приоритетов второй приоритет имеет тот же вес, что и первый. Метод Борда — компромисс между ними*.

Он заключается в том, что первый приоритет избирателя приносит кандидату 2 очка, второй приоритет — 1 очко, третий приоритет — ни одного очка. Дальше мы складываем очки. Побеждает тот кандидат, у кого их окажется больше. Давайте проанализируем, как работает метод Борда в случае рассмотренного выше профиля предпочтений:

― кандидат A имеет первый приоритет у шести избирателей и второй — у одного, таким образом, он набирает 6 × 2 + 1 × 1 = 13 очков;

― кандидат B имеет первый приоритет у пяти избирателей и второй — у четырех, таким образом, он набирает 5 × 2 + 4 × 1 = 14 очков;

― кандидат C имеет первый приоритет у двух избирателей и второй — у восьми, таким образом, он набирает 2 × 2 + 8 × 1 = 12 очков.

В соответствии с методом Борда победителем станет кандидат B. Нарисуем сводную таблицу победителей для одного и того же профиля предпочтений при использовании трех разных методов:

Результат обескураживает. Сложно обвинить какой-либо из трех методов в нелепости (в отличие от правила нечетности или правила меньшинства). Все три подхода удовлетворяют критериям честности: им свойственны нейтральность учета избирателей, нейтральность учета кандидатов и монотонность, потому нельзя отбраковать хотя бы один из них на этом основании. Может быть, мы найдем еще какой-нибудь критерий честности, чтобы выбрать «наилучший» метод?

Независимость от посторонних альтернатив

Последний критерий справедливости, который я рассмотрю в этой главе, называется независимость от посторонних альтернатив. Он носит более изощренный характер, чем другие критерии, поэтому я начну с простого примера. Вообразите, что ваша подруга выбирает десерт после ужина в ресторане. В меню указаны три варианта: торт, пирог и мороженое. Девушка заказывает мороженое. Официант, приняв ее заказ, говорит вам: «О, похоже, у нас закончились пироги». Тут девушка отвечает: «В таком случае я закажу торт!»

Что за чушь? Если она предпочитает мороженое (а не торт и не пирог), нет никакой разницы, остались ли в ресторане пироги. Но перемена выбора вашей подружки связана именно с фактом отсутствия пирогов, это не совпадение. Есть искушение заподозрить, все ли у нее в порядке с головой!

Мы ожидаем, что методы принятия решений будут разумными. Допустим, некий метод провозглашает кандидата X победителем на основании определенного профиля предпочтений. Допустим также, что другой кандидат, Y, снимает свою кандидатуру (и ни один избиратель не меняет своего мнения). В таком случае X должен остаться победителем. Если метод удовлетворяет такому условию, это и есть независимость от посторонних альтернатив.

Подумаем в том же ключе о правиле большинства. Для рассмотренного выше профиля предпочтений этот метод провозглашает победителем A. Теперь представим, что C снимает кандидатуру. Профиль предпочтений меняется следующим образом:

На сей раз победителем становится кандидат B! Таким образом, правило большинства не удовлетворяет критерию независимости от посторонних альтернатив. Может быть, правило первых двух приоритетов лучше? На основе того же профиля предпочтений победителем становится C. Что произойдет, если A сойдет с дистанции? Останется всего два кандидата! Тут мы заходим в тупик. Вот вам головоломка: попробуйте составить такой профиль предпочтений при голосовании за четырех кандидатов (A, B, C, D), чтобы правило первых двух приоритетов провозглашало победителем A, но если бы из гонки выбыл D, победителем стал бы B. Ответ я дам в конце главы.

Наконец, протестируем метод Борда. Он провозглашает победителем B, но если C выбывает, победителем становится A. Ни один из трех методов не удовлетворяет критерию независимости от посторонних альтернатив.

Спокойствие, только спокойствие! Есть множество других методов. Разумеется, какие-нибудь из них удовлетворяют критерию независимости от посторонних альтернатив. Например, правило диктатора (если кандидат A имеет первый приоритет у избирателя No 1, он останется победителем, кто бы из других кандидатов ни выбыл из игры). Разумеется, правило диктатора — не лучший метод, потому что не удовлетворяет одному из основных критериев — нейтральности учета избирателей.

* Кеннет Джозеф Эрроу (1921–2017) — американский экономист, лауреат Нобелевской премии по экономике за 1972 год «за новаторский вклад в общую теорию равновесия и теорию благосостояния». — Прим. пер.

Возникает вопрос: какой из справедливых методов голосования удовлетворяет критерию независимости от посторонних альтернатив? Ответ был найден Кеннетом Эрроу* в 1950 году: увы, но такого метода нет.

Теорема невозможности Эрроу носит несколько технический характер, но ее смысл заключается в том, что при наличии более чем двух кандидатов ни один метод не удовлетворяет базовому критерию независимости от посторонних альтернатив*.

* Точнее, ни один метод не удовлетворяет одновременно четырем критериям: нейтральности учета избирателей, нейтральности учета кандидатов, монотонности и независимости от посторонних альтернатив. — Прим. науч. ред.

Как нам теперь быть? Если все методы «несправедливы», каким из них нам руководствоваться? Или просто нужно отбросить критерий независимости от посторонних альтернатив? Нанесет ли это большой вред?

Проблема методов, не удовлетворяющих последнему критерию, заключается в том, что они поощряют избирателей голосовать иначе, чем они планировали изначально, если какой-нибудь кандидат портит шансы вероятного победителя. Например, вам по душе кандидаты A и B, но вы питаете отвращение к кандидату C. Вы склоняетесь к тому, чтобы голосовать за A, но внезапно узнаете из выпуска новостей, что шансы A на победу невелики. За кого вы будете голосовать? При подсчете голосов по правилу большинства (и при использовании некоторых других методов) неразумно голосовать за A, хотя изначально вы планировали поступить именно так. Если вы проголосуете за A, то отнимете один голос у B.

Если A не выбывает из игры, а избиратели, чьи изначальные приоритеты совпадают с вашими, не меняют своего решения и все-таки голосуют за A, это отнимает голоса у B и обеспечивает победу C. Но если A по тем или иным причинам выбывает из игры, вы голосуете за B, и его шансы на победу возрастают.

Если метод принятия решений удовлетворяет критерию независимости от посторонних альтернатив, такой дилеммы не возникает. Вы можете голосовать, как и планировали, потому что выбор в пользу A не обесценит вашего голосования.

Читать дальше
Twitter
Одноклассники
Мой Мир

материал с theoryandpractice.ru

1

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • tandp
          • математика
          • ученые
          • домен theoryandpractice.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции