html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Сверхпроводник передал квантовые вихри обычному металлу


V. S. Stolyarov et al./ Nature Communications, 2018

Физики экспериментально показали, что сверхпроводник может вызвать в находящемся в непосредственной близости обычном металле появление квантовых вихрей, в которых вихревые сверхпроводящие токи окружают цилиндрическое магнитное ядро. Причиной возникновения таких структур становится эффект наведенной квантовой когерентности, при этом размер вихрей в нормальном металле оказывается в несколько раз больше, чем в самом сверхпроводнике, пишут ученые в Nature Communications.

В сверхпроводниках при понижении температуры происходит переход из обычного проводящего состояния в сверхпроводящее, в котором сопротивление становится равным нулю, а магнитный поток — выталкивается из материала наружу. Этот переход может происходить резко (в таком случае материал называют сверхпроводником первого рода) или постепенно (в сверхпроводниках второго рода). Механизм второго типа переходов ученые объясняют образованием в структуре материала вихрей сверхпроводящего тока (вихрей Абрикосова), которые образуются вокруг несверхпроводящего магнитного ядра цилиндрической формы, ось которого направлена вдоль линий магнитного поля.

Физики из России и Франции под руководством Василия Столярова (Vasily Stolyarov) и Дмитрия Родичева (Dimitri Roditchev) из Московского физико-технического института показали, что такие же квантовые вихри с выраженным магнитным ядром могут образоваться и в достаточно толстом слое обычного несверхпроводящего металла, если его поверхность находится в непосредственной близости от поверхности сверхпроводника. Обнаружить этот эффект ученым удалось с помощью сканирующей туннельной микроскопии в системе, состоящей из слоя ниобия толщиной 100 нанометров, разделенного нанометровым зазором с пленкой меди толщиной 50 нанометров.

Схема экспериментальной установки (слева), спектры проводимости в сверхпроводящем ниобии и меди (по центру), карта проводимости в меди, на которой видны вызванные квантовые вихри (справа сверху), и нормированные профили проводимости одного такого вихря в меди и ниобии (справа снизу)

V. S. Stolyarov et al./ Nature Communications, 2018

Измерения ученые проводили в условиях сверхвысокого вакуума при температуре от 4 до 4,5 кельвина, при которой ниобий проявляет свойства сверхпроводника второго рода, а медь находится в обычном проводящем состоянии. Перпендикулярно плоскому зазору прикладывали магнитное поле: сначала увеличивая его постепенно от 5 до 55 миллитесла (чтобы произошло образование вихрей), а потом резким скачком поднимая сразу до 120 миллитесла (чтобы влияние вихрей распространилось на соседнюю медь). В результате вихри, которые изначально образовались в ниобии, насквозь «пересекали» слой меди и оказывались на наружной поверхности металла, так что их можно было зафиксировать на картах проводимости с помощью туннельного микроскопа.

К такому эффекту приводит наведенная квантовая когерентность между двумя металлами, в результате которой в обычном металле появляются квантовые вихри, а в сверхпроводнике — происходит частичное нарушение порядка. Этот же эффект используется в большом количестве различных сверхпроводниковых систем — от простых джозефсоновских контактов до квантовых компьютеров. Что интересно, в данном случае он привел к образованию в обычном металле вихрей, магнитное ядро которых оказалось в несколько раз больше, чем у вихрей Абрикосова в самом ниобии.

Экспериментальные наблюдения физики подтвердили с помощью численного решения уравнения Узаделя и показали, что наведенная квантовая когерентность действительно может приводить к возникновению вихревых структур в обыкновенном металле. Эти вихри возникают непосредственно над вихрями Абрикосова в сверхпроводнике, но за счет влияния циркулирующих экранирующих токов их магнитное ядро оказывается значительно больше по размеру. Предложенная для теоретического описания численная модель позволила изучить поведение (в частности концентрацию и спектральные характеристики) квантовых вихревых структур в меди в зависимости от температуры и величины магнитного поля.

Рассчитанная плотность состояний на контакте меди (сверху) и ниобия (снизу) в магнитном поле 5 миллитесла. По осям отложено расстояние в нанометрах

V. S. Stolyarov et al./ Nature Communications, 2018

Рассчитанная плотность состояний на контакте меди (сверху) и ниобия (снизу) в магнитном поле 55 миллитесла. По осям отложено расстояние в нанометрах

V. S. Stolyarov et al./ Nature Communications, 2018

Рассчитанная плотность состояний на контакте меди (сверху) и ниобия (снизу) в магнитном поле 120 миллитесла. По осям отложено расстояние в нанометрах

V. S. Stolyarov et al./ Nature Communications, 2018

По словам ученых, описанный ими механизм формирования квантовых вихрей в обычном металле дает возможность создать метод управления их свойствами с помощью внешних условий. Такой контроль, в свою очередь, в будущем может позволить использовать этот эффект при создании сверхпроводящих кубитов, исследовании майорановских состояний и топологической сверхпроводимости.

Возникающие в сверхпроводящих материалах вихри Абрикосова часто проявляют довольно интересные свойства. Например, именно такие вихри оказались самыми быстрыми объектами на Земле после фотонов и других субатомных частиц. Так, в сверхпроводящей пленке из свинца при температурах порядка 7 кельвинов их скорость достигают 20 километров в секунду. А шведские физики предложили использовать вихри Абрикосова для разработки сверхпроводящего элемента памяти.

Александр Дубов

Читать дальше
Twitter
Одноклассники
Мой Мир

материал с nplus1.ru

1

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • nplus1.ru
          • физика
          • ученые
          • исследования
          • домен nplus1.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции