html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Потерянные фотоны ускорили вычисления бозонного сэмплера


Hui Wang et al. / Phys. Rev. Lett.

Китайские физики увеличили скорость работы бозонного сэмплера — квантового вычислителя, способного находить распределение вероятностей для бозонов в заданной системе, — учитывая процессы с потерями фотонов, которые обычно исключаются из рассмотрения. На несложной установке с семью фотонами ученым удалось добиться почти тридцатикратного увеличения частоты. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.

Настоящий квантовый компьютер должен быть универсальным, то есть на нем должны работать произвольные алгоритмы — например, алгоритм Шора для разложения чисел на простые множители или алгоритм Гровера для решения задачи перебора. В настоящее время такие компьютеры уже существуют, однако число кубитов, которыми они оперируют, сравнительно мало, и проводимые ими вычисления в принципе можно повторить на классическом суперкомпьютере. Чтобы достичь квантового превосходства — то есть построить квантовый вычислитель, который нельзя смоделировать классическими средствами, — нужно увеличить число одновременно работающих кубитов, научиться отслеживать и оперативно исправлять возникающие в ходе вычислений ошибки, а также корректно считывать их состояния. В настоящее время физики постепенно приближаются к этой границе; подробнее прочитать об их достижениях можно в нашем материале «Сколько ждать квантового превосходства?»

С другой стороны, квантового превосходства можно достичь с помощью специальных вычислителей, направленных на решение определенного класса задач и не претендующих на реализацию произвольных алгоритмов. Например, по такому пути пошла канадская компания D-wave, выпускающая компьютеры, которые моделируют квантовый отжиг, то есть быстро решают различные задачи оптимизации — например, ищут среди экспериментальных данных распады, указывающие на бозон Хиггса. В некоторых специальных случаях компьютеры компании превосходят классические в сотни миллионов раз.

Другой пример специальных вычислителей — это бозонные сэмплеры (boson sampling), с помощью которых можно быстро строить распределения вероятностей для системы бозонов. В таких устройствах запутанные фотоны направляются в специальную оптическую сеть, интерферируют в ней и образуют на выходе некоторое распределение (сколько фотонов попало в каждый из каналов), которое определяется устройством сети. Собственно, основная задача сэмплера — определить вид этого распределения; подбирая параметры установки и настраивая сеть, можно моделировать конкретные системы, например, вычислять колебательные спектры молекул. Теоретические расчеты показывают, что бозонные сэмплеры, оперирующие достаточно большим числом фотонов (порядка ста), нельзя смоделировать на классическом компьютере.

К сожалению, из-за несовершенства экспериментальных установок в бозонных сэмплерах постоянно происходят утечки фотонов, которые снижают скорость их работы и мешают достичь квантового превосходства. Как правило, экспериментаторы просто выбрасывают из рассмотрения такие процессы. Тем не менее, в 2016 году физики-теоретики Скотт Ааронсон (Scott Aaronson) и Даниэль Брод (Daniel Brod) показали, что вычисления с фиксированным числом потерянных фотонов так же сложно смоделировать на классическом компьютере, как и процессы без потерь. При этом на одних и тех же сетях процессы генерируют одинаковое распределение. Это значит, что скорость работы бозонных сэмплеров можно повысить, если разделить процессы с фиксированным числом потерянных фотонов и рассмотреть их вклады по отдельности.

Группа ученых под руководством Цзянь Вэй Паня (Jian-Wei Pan) реализовала такую схему на практике и показала, что с ее помощью действительно можно увеличить скорость вычислений. Построенная физиками установка позволяла получать до семи запутанных фотонов, которые генерировались с помощью полупроводниковой квантовой точки, возбуждаемой лазером. После получения фотоны направлялись в оптическую сеть 16×16 (16 входов, 16 выходов), эквивалентную системе из 113 разделителей и 14 зеркал, а затем считывались с помощью 16 однофотонных детекторов. Хотя потерями в сети можно было пренебречь (они составляли менее 1,5 процентов), примерно каждый четвертый фотон терялся при генерации (эффективность около 82 процентов) и каждый второй — при детектировании (эффективность около 53 процентов). Это позволяло ученым регулировать число фотонов, которые «впрыскивались» в сеть и терялись при детектировании.

Изображение экспериментальной установки (a), схема оптической сети (b) и ее положение в установке (c)

Hui Wang et al. / Phys. Rev. Lett.


Для начала физики выделили из данных события, в которых в сеть поступало три, четыре или пять фотонов, а затем один из них терялся при детектировании. Всего ученые зарегистрировали примерно 400 тысяч трехфотонных, 200 тысяч четырехфотонных и 34 тысячи пятифотонных событий. При этом распределение вероятностей, полученное в такой «урезанной» схеме, совпало с ожидаемым на 99,4, 98,9 и 96,0 процентов соответственно. Затем ученые рассмотрели процессы с потерей двух и более фотонов, в которых изначально в сеть поступало различное число частиц, и получили аналогичные результаты.

В то же время, ученые подтвердили, что скорость набора статистики в процессах с потерями значительно выше скорости в процессах без потерь. Так, например, на построенной установке скорость счета для трехфотонных процессов без потерь составляла примерно 20 килогерц, тогда как скорости счета для процессов, в которых три фотона на выходе получалось после потери одного (4−1), двух (5−2), трех (6−3) или четырех (7−4) фотонов, составляла 88, 188, 358 и 673 килогерца соответственно. Это позволяет существенно ускорить вычисления на более сложных установках, оперирующих бо́льшим числом частиц. Например, в классической схеме с 50 фотонами одно событие набирается примерно 11 дней (10−6 герц), в схеме с 52−2 фотонами — за три минуты (0,005 герц). Поэтому авторы статьи считают, что схема с потерями позволит в скором времени добиться квантового превосходства для бозонных сэмплеров.

Зависимость частоты набора статистики для системы с различным числом «впрыскиваемых» в сеть и потерянных фотонов (точки) и сравнение с теоретическими предсказаниями (пунктирные линии)

Hui Wang et al. / Phys. Rev. Lett.

Зависимость частоты счета бозонного сэмплера, в котором после потери n частиц остается еще 50 фотонов

Hui Wang et al. / Phys. Rev. Lett.


Хотя увеличить число кубитов, которыми одновременно управляет универсальный квантовый компьютер, довольно сложно из-за малого времени декогеренции, физики постепенно улучшают этот показатель — так, всего несколько лет назад квантовые компьютеры содержали в себе не более пяти кубитов, а сейчас их число доходит до нескольких десятков. Например, группа физиков под руководством Михаила Лукина построила в июле прошлого года 51-кубитный квантовый компьютер, работающий с ультрахолодным облаком атомов рубидия, исследователи из IBM сообщают о 50-кубитном, а инженеры из Google — о 72-кубитном сверхпроводниковом квантовом компьютере. Некоторые ученые считают, что эти вычислители уже могут обеспечить квантовое превосходство, поскольку с помощью классического суперкомпьютера на данный момент удалось просчитать только устройство с 46 кубитами, однако в действительности все немного сложнее.

Ранее мы уже писали о достижениях группы Цзянь Вэй Паня. Например, в ноябре 2016 года ученым удалось построить десятифотонный бозонный сэмплер, а в мае прошлого года их установка в 200 раз «обогнала» по вычислительной мощности ENIAC — первый универсальный классический компьютер.

Дмитрий Трунин

Читать дальше
Twitter
Одноклассники
Мой Мир

материал с nplus1.ru

1

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • nplus1.ru
          • физика
          • ученые
          • лазер
          • домен nplus1.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции