html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Нейросеть превратила спутниковые снимки в обычные фотографии с земли


Xueqing Deng et al. / arXiv.org, 2018

Американские исследователи создали нейросеть, которая превращает спутниковые снимки в фотографии той же местности с уровня земли. Разработчики считают, что в будущем алгоритм можно использовать для увеличения эффективности определения покрытия и использования территории по спутниковым снимкам, сообщается в работе, опубликованной на arXiv.org.

Обычно для удаленного изучения местности используются спутниковые снимки или даже видеозаписи. Тем не менее, часто они имеют низкое разрешение, а также, как и любые снимки сверху, не так удобны и информативны, как обычные снимки с уровня земли. В качестве решения этой проблемы ученые также используют фотографии из социальных сетей или других сайтов, снабженные геометками, и панорамные снимки с картографических сервисов. Но эти снимки покрывают очень малую долю всей поверхности Земли и распределены неравномерно.

Группа исследователей из Университета Калифорнии в Мерседе под руководством Шона Ньюсэма (Shawn Newsam) предположила, что снимки с уровня земли можно синтезировать искусственно на основе снимков той же местности, сделанных с орбиты. Для этого исследователи выбрали генеративно-состязательную нейросеть на основе сверточных нейросетей, состоящую из двух основных элементов — генератора и дискриминатора. Генератор получает в качестве исходных данных вектор, созданный из небольшого фрагмента спутникового снимка, и дополнительный случайный вектор. После этого он создает на основе исходных данных изображение, которое отдается на проверку дискриминатору. Тот сравнивает это изображение с настоящими фотографиями из датасета, сделанными с уровня земли, и определяет, настоящее оно или сгенерированное нейросетью. В результате обе сети постепенно обучаются — генератор, получая оценку от дискриминатора, начинает создавать все более правдоподобные изображения, а дискриминатор учится точнее распознавать синтетические изображения.

Архитектура нейросети

Xueqing Deng et al. / arXiv.org, 2018

В качестве данных для обучения нейросети исследователи собрали датасет, состоящий из спутниковых снимков с Google Maps и соответствующих им фотографий местности с сайта Geograph. После этого разработчики обучили нейросеть на четырех тысячах таких пар. Авторы работы признают, что созданные нейросетью изображения сложно перепутать с настоящими фотографиями, но они были созданы на основе спутникового снимка размером 10 на 10 пикселей, и, тем не менее, хорошо отражают реальную обстановку на земле.

Примеры исходных спутниковых снимков, сгенерированных нейросетью изображений и настоящих фотографий того же места

Xueqing Deng et al. / arXiv.org, 2018

Исследователи также решили выяснить, подходят ли создаваемые нейросетью изображения для классификации территории по типу покрытия (трава, лес, асфальт и другое). Для этого они создали 20 тысяч пар спутниковых снимков и фотографий, аналогичных исходному датасету, а также использовали базу данных покрытия территории Великобритании за 2015 год. После этого авторы провели классификацию с помощью метода опорных векторов и выяснили, что данные, полученные с помощью синтезированных изображений, имеют точность 82 процента — выше, чем для настоящих фотографий, но ниже, чем у спутниковых снимков.

Кроме того, авторы проверили способность нейросети создавать карту признаков для классификации территории на городскую и сельскохозяйственную. Они модифицировали нейросеть и снова применили для классификации метод опорных векторов. После этого результаты сравнивали с другими классификаторами, которые использовали в качестве исходных данных реальные фотографии, а также интерполировали данные для местности, для которой не было настоящих фотографий. Тесты показали, что классификация с использованием сгенерированных из спутниковых снимков изображений оказалась самой точной и имела точность 73 процента.

В прошлом году канадские исследователи использовали генеративно-состязательную нейросеть для воссоздания из спутниковых снимков карты высоты и текстуры местности. А в 2016 году американские исследователи обучили нейросеть поиску бедных регионов на основе снимков со спутника.

Григорий Копиев

Читать дальше
Twitter
Одноклассники
Мой Мир

материал с nplus1.ru

3

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • nplus1.ru
          • ученые
          • университет
          • домен nplus1.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции