html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Нейросеть научили определять происхождение рамена по фотографии

Японский программист создал нейросеть, которая способна с 95-процентной точностью определять по фотографии тарелки с раменом заведение, в котором его приготовили. Для этого он использовал сервис Google AutoML Vision, который автоматически создает оптимальные нейросетевые модели для распознавания конкретных типов объектов, сообщается в блоге Google.

Одно из сильных свойств нейросетей заключается в способности находить незаметные обычному человеку закономерности в больших объемах данных. Программист из Японии по имени Кэндзи Дои (Kenji Doi) предположил, что вид приготовления одинаковых блюд зависит от конкретного повара, инструментов и других факторов, и, соответственно, эти особенности можно определить с помощью нейросети. Он решил проверить гипотезу на фотографиях рамена, приготовленных в 41 точке известной японской сети ресторанов Ramen Jiro.

В качестве тренировочных данных для алгоритма он собрал в интернете 48244 фотографий из 41 ресторана, отбросил неподходящие по каким-либо причинам картинки, и разметил эти данные, сопоставив каждую фотографию с конкретным рестораном. В результате он получил набор данных, состоящий из примерно 1170 фотографий тарелок с раменом для каждого ресторана. Этот датасет программист загрузил в сервис Google AutoML Vision, позволяющий создавать нейросетевые модели для распознавания образов. Сервис получает размеченные данные, а затем самостоятельно занимается оптимизацией архитектуры модели для конкретной задачи. При таком подходе задача дается немного различающимся моделям, которые конкурируют между собой, и из них отбираются модели с наилучшими результатами, после чего процесс может повторяться.

Примеры фотографий тарелок с рамэном

Google

В результате после 24 тренировки программист получил программу, которая может классифицировать фотографии тарелок с раменом по 41 ресторану сети с точностью 94,5 процентов. Автор проекта отмечает, что нейросеть правильно классифицировала фотографии при том, что на них были одинаковые тарелки и столы, из чего можно сделать предположение, что она научилась определять различия в самих блюдах, например, в размерах кусков мяса или типе сервировки.

В конце прошлого года программисты из Google создали другую кулинарную нейросеть. Они использовали ее для получения наиболее вкусного рецепта шоколадного печенья. Сотрудница нашей редакции решила на собственном опыте испытать кулинарные способности компьютера, испекла такие печенья и написала об этом блог.

Григорий Копиев

Читать дальше
Twitter
Одноклассники
Мой Мир

материал с nplus1.ru

1

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • nplus1.ru
          • домен nplus1.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции