html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Глубокую нейросеть научили «помнить» прошлый опыт

Британские ученые разработали компьютерный алгоритм, который позволяет искусственным нейросетям обучаться, сохраняя «память» о предыдущем опыте. Подробности исследования представлены в журнале Proceedings of National Academy of Sciences (PNAS).

В настоящее время глубокие искусственные нейросети являются одним из наиболее перспективных вариантов реализации машинного обучения. Так, алгоритмы, обученные подобным образом, лучше других справляются с распознаванием изображений и освоением настольных игр. Тем не менее, они по-прежнему значительно уступают биологическим аналогам: в частности, глубокие нейросети не способны сохранять приобретенные ранее навыки при обучении новым задачам. Этот феномен, получивший название «катастрофической забывчивости» (catastrophic forgetting), делает невозможным последовательную тренировку одной и той же нейросети на нескольких задачах.

 

Чтобы восполнить пробел, ученые из Имперского колледжа Лондона и компании DeepMind предложили использовать метод, который позволяет искусственно повышать устойчивость ключевых весов для первой задачи при обучении второй. Технически это осуществляется так: при последовательном обучении нейросети каждому весу (он определяет, насколько тот или иной нейрон значим для ответа системы) дополнительно присваивается параметр F, определяющий его значимость только для определенной задачи. При этом значение F прямо пропорционально устойчивости веса к изменениям. Таким образом, алгоритм сохраняет «память» о самых важных навыках, приобретенных прежде.

 

Принцип работы алгоритма: при обучении задаче B, веса, актуальные для задачи A, блокируются / ©DeepMind

 

Предложенный подход получил название «упругое закрепление весов» (elastic weight consolidation) по аналогии с пружиной, жесткость которой сопоставима с параметром F. В случае нейросети «натяжение» происходит от веса, оптимального для задачи A, к весу, оптимальному для задачи B. В результате функция потерь (энергия пружины) возрастает, и менее значимые веса адаптируются к новой задаче, тогда как важные для предыдущих задач веса, предположительно, остаются неизменными.

 

Испытания алгоритма проводились на двух задачах: обучении с подкреплением и обучении с учителем. В последнем случае нейросеть тренировалась распознавать рукописные цифры, причем авторы последовательно вносили в стимулы искажения, чтобы каждый новый шаг требовал обучения «с нуля». В рамках обучения с подкреплением алгоритм обучался играть в игры приставки Atari 2600, систематически осваивая новые стратегии поведения.

 

Игровые очки, полученные нейросетью при обучении новым методом (красный цвет) и методом градиентного спуска (синий цвет) / ©James Kirkpatrick et al., PNAS, 2017

 

Анализ показал, что алгоритму удалось сохранить «память» о весах, необходимых для выполнения предыдущих задач. В каждом отдельном случае эффективность нейросети снижалась, однако по сумме этапов она демонстрировала хорошие результаты. При обучении методом градиентного спуска, позволяющим стирать веса при тренировке на новой задаче, алгоритм успешно справлялся с выполнением отдельных этапов, но оказался не способен удовлетворительно воспроизвести прошлый опыт.

 

Между тем ученые активно работают над приложением «умных» алгоритмов к практическим задачам. Ранее израильские специалисты начали разработку нейросети для автоматизированной диагностики автомобилей, а их японские коллеги объявили о создании системы, которая может заменить офтальмологов. Кроме того, широкое применение нейросети могут получить в правовой сфере. Так, накануне исследователи обучили компьютерный алгоритм с относительно высокой точностью распознавать преступный умысел человека.

Читать дальше
Twitter
Одноклассники
Мой Мир

материал с naked-science.ru

3

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • NakedScience
          • ученые
          • исследования
          • домен naked-science.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции