R. Silva et al. / Nature Photonics
Физики из России и Германии теоретически показали, что под действием ультракоротких лазерных импульсов моттовский диэлектрик может перейти в проводящее состояние. Предложенный учеными метод впервые совмещает спектроскопию высоких гармоник и динамику многочастичных систем с сильным взаимодействием, с его помощью можно исследовать свойства систем с разрешением по времени порядка нескольких фемтосекунд. Статья опубликована в Nature Photonics.
Обычно ученые пренебрегают взаимодействием электронов при описании электрических свойств твердых тел — проводников и изоляторов. Точнее, они считают, что взаимодействие есть, но оно слишком мало, и движение реальных электронов можно свести к движению квазичастиц (электронов или дырок) — удобных абстракций, которые отвечают коллективным возбуждениям в среде обычных частиц. Каждую такую квазичастицу можно рассматривать по отдельности от соседок, и проводимость материала удается описать с помощью запрещенной зоны — области значений, которые не может принимать энергия квазичастицы. Так, если ширина запрещенной зоны равна нулю, то частицы движутся по материалу совершенно свободно, и его можно считать проводником. Если ширина запрещенной зоны отлична от нуля, но невелика (один-три электронвольта), электроны смогут «перескочить» через нее, если приложить к ним достаточно большую силу, и материал станет полупроводником. Если же запрещенная зона растянется больше, чем на четыре электронвольта, электроны через нее протуннелировать не смогут, и материал будет обычным изолятором (диэлектриком).
Однако иногда пренебречь взаимодействием нельзя, и зонная теория неправильно предсказывает электрические свойства материала. В 1937 году Ян де Бур (Jan Hendrik de Boer) и Эверт Вервей (Evert Verwey) обнаружили, что некоторые оксиды, для которых зонная теория предсказывает хорошую проводимость, в действительности являются изоляторами. В том же году Невилл Мотт (Nevill Mott) и Рудольф Пайерлс (Rudolf Peierls) объяснили это неожиданное поведение, включив в рассмотрение взаимодействие между отдельными электронами. Грубо говоря, в подобном изоляторе энергия отталкивания электронов оказывается выше их средней кинетической энергии, электроны не могут свободно передвигаться внутри материала, и он не проводит электрический ток. Сейчас такие изоляторы называются моттовскими. К сожалению, сильное взаимодействие между электронами не только наделяет моттовские изоляторы необычными свойствами, но и затрудняет их изучение.
Группа ученых под руководством Михаила Иванова использовала для теоретического исследования свойств моттовского изолятора метод спектроскопии высоких гармоник (High harmonic generation, HGG). В этом методе на поверхность материала направляется серия коротких — длительностью порядка нескольких фемтосекунд — лазерных импульсов с заданными характеристиками. Например, частотой, интенсивностью, фазой и поляризацией. При отражении от поверхности эти характеристики меняются и по их изменению можно судить о свойствах электронных состояний внутри материала. Слово «высокий» в названии метода появилось из-за того, что в излучении образца можно увидеть не только основную, но и более высокие гармоники (в некоторых случаях более пяти). За последние двадцать лет метод спектроскопии высоких гармоник активно использовался для изучения твердых тел, демонстрации динамических осцилляций Блоха и измерения кривизны Берри. Однако на телах с сильным взаимодействием между электронами его применяют впервые.
Для описания моттовского диэлектрика ученые использовали одномерную модель Ферми-Хаббарда, в которой на каждое состояние в среднем приходилось по одной частице. В этой модели частицы могут «перепрыгивать» в соседнее состояние с некоторой вероятностью t0, однако вероятность сильно уменьшается, если состояние уже занято другой частицей — это моделирует электрическое отталкивание с энергией U. В основном состоянии моттовский изолятор имеет антиферромагнитный порядок, а элементарные возбуждения в нем представлены парами связанных дырок (doublon–hole pairs). К описанной модели ученые добавили электромагнитное поле, частота которого составляла примерно 33 терагерца, а амплитуда медленно менялась во время импульса, и рассчитали вероятность возбуждения пар связанных дырок, а также взаимную скоррелированность соседних спинов.
Зависимость взаимной скоррелированности спинов соседних ячеек от длительности импульса и отношения U/t0
R. Silva et al. / Nature Photonics
Зависимость концентрации пар дырок от длительности импульса и отношения U/t0
R. Silva et al. / Nature Photonics
Зависимость населенности основного состояния от длительности импульса и отношения U/t0
R. Silva et al. / Nature Photonics
Спектр отраженной от образца волны при различных соотношениях U/t0. Случай U/t0 = 0 отвечает чистому проводнику
R. Silva et al. / Nature Photonics
Дмитрий Трунин
Тебе это не нравится?
You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.