html текст
All interests
  • All interests
  • Design
  • Food
  • Gadgets
  • Humor
  • News
  • Photo
  • Travel
  • Video
Click to see the next recommended page
Like it
Don't like
Add to Favorites

Эволюция полового размножения у дрожжей: надстройка меняется, базис остается


Схема жизненного цикла пекарских дрожжей Saccharomyces cerevisae

Рис. 1. Схема жизненного цикла пекарских дрожжей Saccharomyces cerevisae. 1 — почкование, 2 — конъюгация (спаривание), 3 — образование четырех гаплоидных спор из диплоидной клетки в результате мейоза. Схема с сайта www.wynboer.co.za

Американские биологи обнаружили, что генные сети, регулирующие половое размножение, по-разному устроены у разных видов дрожжей. У обычных пекарских дрожжей и ряда других видов спаривание (слияние двух гаплоидных клеток в одну диплоидную) и мейоз (образование гаплоидных спор из диплоидной клетки) разнесены во времени, а в жизненном цикле преобладает диплоидная фаза. У других видов мейоз происходит вскоре после спаривания, и поэтому в жизненном цикле преобладает гаплоидная фаза. Как выяснилось, в первом случае спаривание и мейоз управляются двумя независимыми генетическими программами, а во втором эти программы слиты воедино, причем белки-регуляторы, необходимые для спаривания, стали необходимыми также и для мейоза, и наоборот. По-видимому, слияние управляющих программ происходило независимо в разных группах дрожжей, когда им становилось выгодно проводить большую часть жизни в гаплоидном состоянии.

У организмов, размножающихся половым путем, в жизненном цикле обязательно присутствуют два особых события – оплодотворение, в результате которого два гаплоидных генома объединяются в одной клетке, и редукционное деление (мейоз), в ходе которого из диплоидной клетки получаются гаплоидные.

Иногда эти события тесно связаны и следуют одно за другим, а иногда — разнесены во времени и происходят более или менее независимо. Первый вариант характерен, например, для животных (у которых оплодотворение следует за мейозом), а также для многих одноклеточных, проводящих большую часть жизни в гаплоидном состоянии (в этом случае, наоборот, мейоз происходит сразу после оплодотворения).

Пример второго варианта — пекарские дрожжи Saccharomyces cerevisae, классический лабораторный объект. Диплоидные клетки S. cerevisae могут долго размножаться почкованием, производя дочерние диплоидные клетки. В определенных условиях (например, при голодании) диплоидная клетка претерпевает мейоз и производит четыре гаплоидные споры. Из спор вырастают гаплоидные дрожжевые клетки, которые тоже могут размножаться почкованием, однако они, в отличие от диплоидных клеток, способны еще и к спариванию (конъюгации). Гаплоидные дрожжи делятся на два пола (a и α), причем спариваться могут только разнополые клетки. В результате спаривания получается диплоидная клетка, и цикл продолжается (рис. 1). Таким образом, у S. cerevisae между мейозом и оплодотворением могут быть долгие периоды бесполого размножения, а сами эти два события друг с другом напрямую не связаны и регулируются разными генами.

По-другому устроен жизненный цикл родственника пекарских дрожжей, патогенного гриба Candida lusitaniae. У этого вида большая часть жизни проходит в гаплоидной фазе, а образовавшаяся в результате конъюгации диплоидная клетка, как правило, не почкуется (или почкуется недолго) и вскоре приступает к мейозу.

Микробиологи из Брауновского университета (США) решили разобраться в причинах этого различия. Они сравнили экспрессию генов S. cerevisae и C. lusitaniae во время спаривания и мейоза. У S. cerevisae наборы генов, отвечающих за эти два процесса, четко различаются. Однако у C. lusitaniae, как выяснилось, разделение труда между двумя группами генов выражено намного слабее.

Во время спаривания у C. lusitaniae активируются не только гены, которые у пекарских дрожжей отвечают за спаривание (включая гены MAPK-каскада, обеспечивающего реакцию клетки на половые феромоны противоположного пола), но и некоторые гены, которые у S. cerevisae необходимы для мейоза, но в спаривании не участвуют. К числу таких «генов мейоза», активирующихся у C. lusitaniae во время спаривания, относятся SPO11, REC8 и IME2.

В диплоидных клетках C. lusitaniae, собравшихся приступить к мейозу, резко (более чем в четыре раза) возрастает экспрессия 618 генов. Самое интересное, что многие из этих генов у S. cerevisae обслуживают исключительно процесс спаривания, а в мейозе не участвуют (у S. cerevisae при мейозе возрастает экспрессия меньшего числа генов — 480). В частности, многие гены, у пекарских дрожжей и других грибов отвечающие за реагирование на половые феромоны, у C. lusitaniae почему-то активируются не только при подготовке к спариванию, но и в ходе мейоза. С другой стороны, некоторые гены, активирующиеся у S. cerevisae при спаривании или мейозе, у C. lusitaniae в этих ситуациях не активируются. Ключевой регулятор мейоза IME1 вообще отсутствует у C. lusitaniae.

Полученные факты позволяют заключить, что генные сети, регулирующие спаривание и мейоз у двух видов, существенно различаются. Чтобы выяснить, имеют ли эти различия функциональное значение, авторы приступили к изучению работы отдельных генов.

Ген IME2 (inducer of meiosis 2) является ключевым регулятором мейоза у S. cerevisae. Как и следовало ожидать, удаление этого гена у C. lusitaniae лишило диплоидные клетки способности к мейозу. Но это не всё: гаплоидные клетки C. lusitaniae без гена IME2 оказались неспособны к спариванию. Между тем у S. cerevisae ген IME2 на спаривание не влияет. Половые феромоны необходимы пекарским дрожжам для регуляции спаривания, но не мейоза. Оказалось, что C. lusitaniae активно производят феромоны и в ходе мейоза, и при спаривании. Ген STE12 кодирует транскрипционный фактор, играющий ключевую роль в регуляции полового поведения у S. cerevisae и многих других грибов. Его удаление у C. lusitaniae лишило клетки не только способности к спариванию (этот результат был ожидаем), но и способности к мейозу, при том что у S. cerevisae этот ген в мейозе не задействован.

Вся совокупность данных говорит о том, что у S. cerevisae есть две более или менее самостоятельные генетические программы, одна из которых регулирует половое поведение (спаривание), а другая — мейоз. У родственного вида C. lusitaniae эти две программы фактически слились в одну.

Авторы проверили, влияет ли удаление гена STE12 на мейоз еще у трех близких видов дрожжей: Kluyveromyces lactis, Pichia pastoris и Yarrowia lipolytica. Во всех трех случаях никакого влияния выявлено не было (как и у S. cerevisae). Это значит, что разделенность программ спаривания и мейоза, по-видимому, является исходным (предковым) признаком данной группы грибов, а их слияние у C. lusitaniae — признак новоприобретенный (рис. 2).

Возможно, ключом к слиянию генетических программ послужила утрата транкрипционного фактора α2. Об этом белке известно, что он не позволяет некоторым генам, активным в гаплоидных клетках (в том числе генам MAPK-каскада, отвечающего за реагирование на половые феромоны), работать также и в диплоидной фазе жизненного цикла. Предки C. lusitaniae утратили α2, что дало возможность «генам спаривания» работать в диплоидных клетках. Это и позволило некоторым из них взять на себя новую функцию регуляторов мейоза.

Слияние программ спаривания и мейоза не является уникальной особенностью C. lusitaniae. Такое же явление обнаружено у дальнего родственника рассматриваемой группы, Schizosaccharomyces pombe, чьи предки отделились от предков других дрожжей более 330 млн лет назад. У этого вида, как и у C. lusitaniae, транскрипционные факторы MAPK-каскада, необходимые для спаривания, необходимы также и для мейоза.

Схема регуляции спаривания и мейоза у некоторых видов дрожжей; внизу - эволюционное дерево дрожжей

Рис. 2. Вверху (a) — схема регуляции спаривания (Mating) и мейоза (Meiosis) у некоторых видов дрожжей. У Schizosaccharomyces pombe и Candida lusitaniae оба процесса регулируются совместно, с участием половых феромонов и белков MAPK-каскада, и индуцируются голоданием. У Saccharomyces cerevisae два процесса регулируются по отдельности, а половые феромоны нужны только для спаривания. Внизу (b) — эволюционное дерево, показывающее, что совместная регуляция спаривания и мейоза возникла у S. pombe и C. lusitaniae независимо. Справа отмечены галочками виды, у которых транскрипционные факторы Ste11 и Ste12 необходимы не только для спаривания, но и для мейоза; крестиками — те, кому они нужны только для спаривания. Рисунок из обсуждаемой статьи в Nature

По-видимому, слияние генетических программ спаривания и мейоза происходило в эволюции грибов неоднократно. По мнению авторов, это могло быть связано с тем, что некоторым видам почему-то становилось выгодно большую часть жизненного цикла проводить в гаплоидной фазе (хотя в чем именно состоят преимущества и недостатки гаплоидности и диплоидности — вопрос дискуссионный, см.: S. P. Otto, A. C. Gerstein, 2008. The evolution of haploidy and diploidy). Единая регуляция спаривания и мейоза у C. lusitaniae и S. pombe приводит к тому, что мейоз у них обычно происходит вскоре после образования диплоидной клетки, и поэтому большую часть жизни эти грибы проводят в гаплоидном состоянии. Напротив, у S. cerevisae и других видов с разделенными программами спаривания и мейоза в жизненном цикле преобладает диплоидная фаза.

Исследование еще раз показало, что в ходе эволюции может происходить радикальная перестройка (rewiring) генных сетей, регулирующих развитие того или иного признака, хотя сам признак при этом не меняется. Другой пример — огромное разнообразие способов детерминации пола у разных организмов, хотя в итоге получается одно и то же: часть особей становится самцами, часть — самками (впрочем, к дрожжам с их «полами» а и α это как раз не относится).

Источник: Racquel Kim Sherwood, Christine M. Scaduto, Sandra E. Torres & Richard J. Bennett. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle // Nature. 2014. V. 506. P. 386–390.

Про половое размножение дрожжей см. также:
Дрожжи занимаются сексом не от хорошей жизни, «Элементы», 18.04.2012.

Про устройство MAPK-каскада (обеспечивающего реакцию дрожжей на половые феромоны противоположного пола) см. также:
Перекомбинирование фрагментов белковых молекул — быстрый способ создания новых признаков, «Элементы», 20.04.2010.

Александр Марков

Читать дальше
Twitter
Одноклассники
Мой Мир

материал с elementy.ru

3

      Add

      You can create thematic collections and keep, for instance, all recipes in one place so you will never lose them.

      No images found
      Previous Next 0 / 0
      500
      • Advertisement
      • Animals
      • Architecture
      • Art
      • Auto
      • Aviation
      • Books
      • Cartoons
      • Celebrities
      • Children
      • Culture
      • Design
      • Economics
      • Education
      • Entertainment
      • Fashion
      • Fitness
      • Food
      • Gadgets
      • Games
      • Health
      • History
      • Hobby
      • Humor
      • Interior
      • Moto
      • Movies
      • Music
      • Nature
      • News
      • Photo
      • Pictures
      • Politics
      • Psychology
      • Science
      • Society
      • Sport
      • Technology
      • Travel
      • Video
      • Weapons
      • Web
      • Work
        Submit
        Valid formats are JPG, PNG, GIF.
        Not more than 5 Мb, please.
        30
        surfingbird.ru/site/
        RSS format guidelines
        500
        • Advertisement
        • Animals
        • Architecture
        • Art
        • Auto
        • Aviation
        • Books
        • Cartoons
        • Celebrities
        • Children
        • Culture
        • Design
        • Economics
        • Education
        • Entertainment
        • Fashion
        • Fitness
        • Food
        • Gadgets
        • Games
        • Health
        • History
        • Hobby
        • Humor
        • Interior
        • Moto
        • Movies
        • Music
        • Nature
        • News
        • Photo
        • Pictures
        • Politics
        • Psychology
        • Science
        • Society
        • Sport
        • Technology
        • Travel
        • Video
        • Weapons
        • Web
        • Work

          Submit

          Thank you! Wait for moderation.

          Тебе это не нравится?

          You can block the domain, tag, user or channel, and we'll stop recommend it to you. You can always unblock them in your settings.

          • elementy.ru
          • секс
          • эволюция
          • исследования
          • америка
          • геном
          • грибы
          • домен elementy.ru

          Get a link

          Спасибо, твоя жалоба принята.

          Log on to Surfingbird

          Recover
          Sign up

          or

          Welcome to Surfingbird.com!

          You'll find thousands of interesting pages, photos, and videos inside.
          Join!

          • Personal
            recommendations

          • Stash
            interesting and useful stuff

          • Anywhere,
            anytime

          Do we already know you? Login or restore the password.

          Close

          Add to collection

             

            Facebook

            Ваш профиль на рассмотрении, обновите страницу через несколько секунд

            Facebook

            К сожалению, вы не попадаете под условия акции